C and C++ Elements to Avoid

Shlomi Fish

 <shlomif@cpan.org>

 Shlomi Fish’s Homepage

Copyright © 2010 Shlomi Fish

This document is copyrighted by Shlomi Fish under the Creative Commons
Attribution 4.0 Unported License.

Code excerpts are assumed to be under the
https://en.wikipedia.org/wiki/MIT_License .

Introduction

Often when people ask for help with C or C++ code, they show code that
suffers from many bad or outdated elements. This is expected, as there
are many bad tutorials out there, and lots of bad code that people
have learned from, but it is still not desirable. To encourage best
practices, here is a document of some of the common bad elements that
people tend to use and some better practices that should be used instead.

A book I read said, that as opposed to most previous idea systems, they
were trying to liquidate negatives instead of to instil positives
in people. So in the spirit of liquidating negatives, this tutorial-in-reverse
aims to show you what not to do.

Note: Please don't think this advice is meant as gospel.
There are some instances where one can expect to deviate from it, and a lot
of it can be considered only the opinion of its originators. I tried to filter
the various pieces of advice I found in the sources
and get rid of things that are either a matter of taste, or not so critical,
or that have arguments for and against (so-called
colour of the bike shed arguments),
but some of the advice here may still be controversial.

The List of Bad Elements

No Indentation

Indentation means
that the contents of every block are promoted from their containing environment
by using a shift of some space. This makes the code easier to read and follow.

Code without indentation is harder to read and so should be avoided.
The Wikipedia article
lists several styles - pick one and follow it.

Compiling without warnings flags

C and C++ Compilers have flags to toggle on warnings such as
-Wall, -Wextra, or -Weverything.
It is a good idea to specify as many of them as possible when compiling the
code and to fix the warnings where appropriate.

Someone gave me this GCC warnings’ theme:

#!/bin/bash
gcc \
 -std=c99 \
 -ansi \
 -pedantic \
 -W \
 -Wall \
 -Wbad-function-cast \
 -Wcast-align \
 -Wcast-qual \
 -Wdeclaration-after-statement \
 -Wfloat-equal \
 -Wformat-nonliteral \
 -Winline \
 -Wmissing-declarations \
 -Wmissing-prototypes \
 -Wnested-externs \
 -Wold-style-definition \
 -Wpointer-arith \
 -Wshadow \
 -Wstrict-prototypes \
 -Wundef \
 -Wunused \
 -Wwrite-strings

Calling variables "file"

Some people call their variables "file". However, file can mean either
file handles,
file names, or the contents of the file. As a result, this should be avoided
and one can use the abbreviations "fh" for file handle, or "fn" for filenames
instead.

Identifiers without underscores

Some people name their identifiers as several words all in lowercase and
not separated by underscores ("_"). As a result, this makes the code harder
to read. So instead of:

char * namesofpresidents[NUM_PRESIDENTS];

Say:

char * names_of_presidents[NUM_PRESIDENTS];

Or maybe:

char * presidents_names[NUM_PRESIDENTS];

Write code in Paragraphs using Empty Lines

If one of your blocks is long, split it into "code paragraphs", with empty
lines between them and with each paragraph doing one thing. Then, it may be a
good idea to precede each paragraph with a comment explaining what it does, or
to extract it into its own function or method.

Don't start Classes with a Lowercase Letter

In C++, classes should start with an uppercase letter (see
the Wikipedia
article about letter case) and starting them with a lowercase letter
is not recommended.

Bad code

class my_class
{
 .
 .
 .
};

class MyClass
{
 .
 .
 .
};

Avoid Intrusive Commenting

Some commenting is too intrusive and interrupts the flow of reading the code.
Examples for that are the ///////////// or
/*****************/ hard-rules that
some people put in their code, the comments using multiple slashes
like ///, or excessively long comment block. Please avoid all those.

Some schools of software engineering argue that if the code's author feels
that a comment is needed, it usually indicates that the code is not clear
and should be factored better (like extracting a method or a subroutine with
a meaningful name.). It probably does not mean that you should avoid writing
comments altogether, but excessive commenting could prove as a red flag.

If you're interested in documenting the public interface of your modules and
command-line programs, refer to tools such as
Doxygen, which may
prove of use.

Accessing Object Slots Directly

It is a bad idea to access the slots/properties/members of an object or
a pointer to it directly. E.g:

Bad code

obj->my_slot = 5;
.
.
.
if (my_obj.my_boolean_slot)
{
}

Instead, create accessors, readers and writers - see
mutator method
on the Wikipedia and
the class Accessors section of the Perl for Newbies tutorial.

'^' and '$' in Regular Expressions

Some people use "^" and "$" in regular expressions to mean
beginning-of-the-string or end-of-the-string. However, they can mean
beginning-of-a-line and end-of-a-line respectively using the /m flag
which is confusing. It's a good idea to use \A for start-of-string
and \z for end-of-string always (assuming they are supported
by the regex syntax), and to specify the /m flag
if one needs to use "^" and "$" for start/end of a line.

Magic Numbers

Your code should not include unnamed
numerical constants also known as "magic numbers" or "magic constants".
For example, there is one in this code to shuffle a deck of cards:

Bad code

for (int i = 0; i < 52; i++)
{
 const int j = i + rand() % (52-i);
 swap(cards[i], cards[j]);
}

This code is bad because the meaning of 52 is not explained and it is
arbitrary. A better code would be:

const int deck_size = 52;

for (int i = 0; i < deck_size; i++)
{
 int j = i + rand() % (deck_size - i);
 swap(cards[i], cards[j]);
}

Mixing Tabs and Spaces

Some improperly configured text editors may be used to write code that, while
indented well at a certain tab size looks terrible on other tab sizes, due
to a mixture of tabs and spaces. So either use tabs for indentation or make
sure your tab key expands to a constant number of spaces. You may also wish
to make use of auto-formatters like GNU indent to properly format your code.

Several synchronised arrays.

Related to “varvarname” is the desire of some beginners to use several
different arrays with synchronised content, so the same index at every array
will contain a different piece of data for the same record:

Bad code

char * names[ITEMS_COUNT];
char * addresses[ITEMS_COUNT];
int ages[ITEMS_COUNT];
char * phone_numbers[ITEMS_COUNT];

.
.
.

names[num] = strdup("Isaac Newton");
addresses[num] = strdup("10 Downing St.");
ages[num] = 25;
phone_numbers[num] = strdup("123456789");

These arrays will become hard to synchronise, and this is error prone. A
better idea would be to use an array (or a different data structure) of
structs, classes, or pointers to them:

Person * people[ITEMS_COUNT];

num = 0;
people[num++] = create_person(
 "Isaac Newton",
 "10 Downing St.",
 25,
 "123456789"
);

Modifying data structures while iterating through them.

Some people ask about how to add or remove elements to an existing array or
a different container when iterating over them using loops. The
answer to that is that it likely won't be handled too well, and it expects
that during loops the keys of a data structure will remain constant.

The best way to achieve something similar is to populate a new container
during the loop. So do that instead.

Comments and Identifiers in a Foreign Language

Apparently, many non-native English speakers write code with comments and
even identifiers in their native language. The problem with this is that
programmers who do not speak that language will have a hard time understanding
what is going on here, especially after the writers of the foreign language
code post it in to an Internet forum in order to get help with it.

Consider what Eric Raymond wrote in
his
"How to Become a Hacker" document (where hacker is a software enthusiast
and not a computer intruder):

4. If you don't have functional English, learn it.

As an American and native English-speaker myself, I have previously been
reluctant to suggest this, lest it be taken as a sort of cultural imperialism.
But several native speakers of other languages have urged me to point out that
English is the working language of the hacker culture and the Internet, and
that you will need to know it to function in the hacker community.

Back around 1991 I learned that many hackers who have English as a second
language use it in technical discussions even when they share a birth tongue;
it was reported to me at the time that English has a richer technical
vocabulary than any other language and is therefore simply a better tool for
the job. For similar reasons, translations of technical books written in
English are often unsatisfactory (when they get done at all).

Linus Torvalds, a Finn, comments his code in English (it apparently never
occurred to him to do otherwise). His fluency in English has been an important
factor in his ability to recruit a worldwide community of developers for Linux.
It's an example worth following.

Being a native English-speaker does not guarantee that you have language skills
good enough to function as a hacker. If your writing is semi-literate,
ungrammatical, and riddled with misspellings, many hackers (including myself)
will tend to ignore you. While sloppy writing does not invariably mean sloppy
thinking, we've generally found the correlation to be strong — and we have no
use for sloppy thinkers. If you can't yet write competently, learn to.

So if you're posting code for public scrutiny, make sure it is written with
English identifiers and comments.

“using namespace std;”

One can often see C++ code with using namespace std; on top, but that is
a bad idea. The C++ standard requires that the “std” namespace contain certain
symbols, but it doesn't prevent it from containing other symbols
(presumably, implementation details of the standard library). If you use
using namespace std;, you never know what else you might also be
bringing into the global namespace.

One possible alternative is to selectively do
using std::cout;, using std::string; and so forth,
for each symbol that you wish to use.

The Law of Demeter

See the Wikipedia article
about “The Law of Demeter” for more information. Namely, doing many nested
method calls like
obj->get_employee('sophie')->get_address()->get_street()
is not advisable, and should be avoided.

A better option would be to provide methods in the containing objects to
access those methods of their contained objects. And an even better way would
be to structure the code so that each object handles its own domain.

Passing parameters in delegation

Sometimes we encounter a case where subroutines each pass the same parameter
to one another in delegation, just because the innermost subroutines in the
call-stack need it.

To avoid it, create a class, and declare methods that operate on the
fields of the class, where you can assign the delegated arguments.

Duplicate Code

As noted in
Martin
Fowler's "Refactoring" book (but held as a fact for a long time
beforehand),
duplicate code is a
code smell, and should be avoided. The solution is to extract duplicate
functionality into subroutines, methods and classes.

Long Functions and Methods

Another common code smell is
long
subroutines and methods. The solution to these is to extract several
shorter methods out, with meaningful names.

Using the ternary operator for side-effects instead of if/else

People who wish to use the ternary
inline- conditional operator (? :) for choosing to execute between
two different statements with side-effects
instead of using if and else. For example:

Bad code

cond_var ? (hash["if_true"] += "Cond var is true")
 : (hash["if_false"] += "Cond var is false")

(This is assuming the ternary operator was indeed written correctly, which
is not always the case).

However, the ternary operator is meant to be an expression that is a choice
between two values and should not be used for its side-effects. To do the
latter, just use if and else:

if (cond_var)
{
 hash["if_true"] += "Cond var is true";
}
else
{
 hash["if_false"] += "Cond var is false";
}

This is safer, and better conveys one’s intentions.

For more information, refer to
a
relevant thread on the Perl beginners mailing list (just make sure you read
it in its entirety).

Using Global Variables as an Interface to the Module

While it is possible to a large extent, one should generally not use global
variables as an interface to a module, and should prefer having a procedural
or an object oriented interface instead.

Using Global Variables or Function-"static" Variables

It is a good idea to avoid global variables or static variables inside
functions; at least those that are not constant. This is because using such
variables interferes with
multithreading,
re-entrancy and prohibits instantiation. If you need to use several common
variables, then define an environment struct or class and pass a pointer to
it to each of the functions.

Declaring all variables at the top (Pre-declarations)

If you are writing C++ or C starting from the C99 standard onwards (which
isn’t supported by some non-standard-compliant compilers such as Microsoft’s
Visual C++), then you should avoid declaring all the variables at the top
of the program or the subroutine (a practice that is referred to as
“pre-declaration”) and instead declare them when they are needed
and with an immediate initialisation/definition using the
= operator.

E.g:

Bad code

int main(int argc, char * argv[])
{
 const char * name;
 int i;

 name = "Rupert";
 for (i=1 ; i<=10 ; i++)
 {
 printf ("Hello %s - No. %d!\n", name, i);
 }

 return 0;
}

Should be replaced with:

int main(int argc, char * argv[])
{
 const char * const name = "Rupert";
 for (int i=1 ; i<=10 ; i++)
 {
 printf ("Hello %s - No. %d!\n", name, i);
 }

 return 0;
}

Trailing Whitespace

With many editors, it can be common to write new code or modify existing
one, so that some lines will contain trailing whitespace, such as
spaces (ASCII 32 or 0x20) or tabs characters. These trailing spaces normally
do not cause much harm, but they are not needed, harm the code’s consistency,
may undermine analysis by patching/diffing and version control tools.
Furthermore, they usually can be eliminated easily without harm.

Here is an example of having trailing whitespace demonstrated using the
--show-ends flag of the GNU cat command:

> cat --show-ends toss-coins.pl
#!/usr/bin/perl$
$
use strict;$
use warnings;$
$
my @sides = (0,0);$
$
my ($seed, $num_coins) = @ARGV;$
$
srand($seed); $
$
for my $idx (1 .. $num_coins)$
{$
 $sides[int(rand(2))]++;$
 $
 print "Coin No. $idx\n";$
}$
$
print "You flipped $sides[0] heads and $sides[1] tails.\n";$
>

While you should not feel bad about having trailing space, it is a good idea
to sometimes search for them using a command such as ack '[\t]+$'
(in version 1.x it should be ack -a '[\t]+$', see
ack), and get rid of them.

Some editors also allow you to highlight trailing whitespace when present. See
for example:

	
Highlight
unwanted spaces in Vim. Also see this post.

	
EmacsWiki:
Show White Space.

Finally, one can check and report trailing whitespace using the following
CPAN modules:

	
Test::EOL.

	
Test::TrailingSpace.

Code and Markup Injection

Care must be taken when constructing statements that are passed to an
interpreter, when putting arbitrary strings inside (using substring expansion
or other methods). This is because if the strings are subject to input from
the outside world (including the users), then one can use specially crafted
strings for executing arbitrary commands and exploiting the system.

An example of this is outputting HTML using
fprintf(file_handle, "<p>%s</p>\n", paragraph_text);
or my_file_fh << "<p>" << paragraph_text << "</p>" << std::endl;
which may allow
inserting arbitrary, malicious, markup inside paragraph_text,
which may include malicious JavaScript, that can steal passwords or alter
the page’s contents.

For more information, see:

	
“Code/Markup
Injection and Its Prevention” resource on the Perl beginners site.

	
Wikipedia articles about
SQL injection
and
Cross-site
scripting.

	
The site Bobby Tables about SQL
injections.

Using Undeclared Symbols

Some C or C++ compilers allow one to use functions or variables that have not
been declared, while automatically inferring their types to be “int” or
whatever. However, for good measure, all variables and functions should be
declared with a proper type because they are often not the same as
the compiler's guess. One can configure GCC and similar compilers to emit
an error on such cases using the
-Werror=implicit-function-declaration flag, which is recommended
to add to one's build system.

Declarations not in common headers

When declaring external functions, variables, classes, etc. make sure to
put them in a common header file, which will also be included by the .c or
.cpp file actually defining the common resource. This way if their type
is changed, you will get a compiler error in the module that defines it,
and there will be more certainty that there isn’t a type mismatch.

Headers without #include guards or #pragma once

You should add #include
guards, or the less standard but widely supported
#pragma once into
header files (“*.h” or “*.hpp” or whatever) to prevent them from being included
times and again by other “#include” directives. Otherwise, it may result in
compiler warnings or errors.

Overly Long Lines in the Source Code

It is a good idea to avoid overly long lines in the source code, because
they need to be scrolled to read, and may not fit within the margins of your
co-developers’ text editors. If the lines are too long, you should break
them or reformat them (for example, by adding a newline before or after an
operator), and by breaking long string constants into several lines using
the string concatenation operator - ..

Many coding standards require lines to fit within 80 characters or
78 characters or so, and you should standardise on a similar limit for your
own code.

Regular Expressions starting or ending with “.*”

It is not necessary to put .* or .*? into the
beginning or end of regular expressions to match something anywhere inside the
string. So for example regcomp(®ex, ".*ab+c") can be
replaced with the simpler: regcomp(®ex, "ab+c"). If you
wish to match and extract the prefix, you should say (.*?) or
(.*).

Populating a Data Structure with Multiple Copies of the Same Pointer or Reference

You can sometimes see code like that:

Bad code

int * my_array[NUM];

int * sub_array = malloc(sizeof(sub_array[0]) * SUB_NUM);
if (! sub_array)
{
 /* Handle out-of-memory */
}
for (int i = 0 ; i < NUM ; i++)
{
 populate_sub_array(i, sub_array);
 my_array[i] = sub_array;
}

The problem with code like this is that the same physical memory location
is being used in all places in the array, and so they will
always be synchronised to the same contents.

As a result, the code excerpts should be written as such instead:

int * my_array[NUM];

for (int i = 0 ; i < NUM ; i++)
{
 int * sub_array = malloc(sizeof(sub_array[0]) * SUB_NUM);
 if (! sub_array)
 {
 /* Handle out-of-memory */
 }
 populate_sub_array(i, sub_array);
 my_array[i] = sub_array;
}
my @array_of_arrays = map { [] } (1 .. $num_rows);

Using One Variable for Two (or More) Different Purposes

Within the scope of its declaration, a variable should serve one purpose, and
serve it well. One should not re-use a variable for a completely different
purpose later on in the scope.

Premature Optimisation

On various online forums, we are often getting asked questions like:
“What is the speediest way to do task X?” or “Which of these pieces of code
will run faster?”. The answer is that in this day and age of extremely fast
computers, you should optimise for clarity and modularity first, and worry
about speed when and if you find it becomes a problem. Professor
Don Knuth had this to say about it:

The improvement in speed from Example 2 to Example 2a is only about 12%, and
many people would pronounce that insignificant. The conventional wisdom shared
by many of today's software engineers calls for ignoring efficiency in the
small; but I believe this is simply an overreaction to the abuses they see
being practiced by penny-wise-and-pound-foolish programmers, who can't debug or
maintain their "optimized" programs. In established engineering disciplines a
12% improvement, easily obtained, is never considered marginal; and I believe
the same viewpoint should prevail in software engineering. Of course I wouldn't
bother making such optimizations on a one-shot job, but when it's a question of
preparing quality programs, I don't want to restrict myself to tools that deny
me such efficiencies.

There is no doubt that the grail of efficiency leads to abuse. Programmers
waste enormous amounts of time thinking about, or worrying about, the speed of
noncritical parts of their programs, and these attempts at efficiency actually
have a strong negative impact when debugging and maintenance are considered. We
should forget about small efficiencies, say about 97% of the time: premature
optimization is the root of all evil.

(Knuth reportedly attributed the exact quote it to C.A.R. Hoare).

While you should be conscious of efficiency, and the performance sanity of
your code and algorithms when you write programs, excessive and premature
micro-optimisations are probably not going to yield a major performance
difference.

If you do find that your program runs too slowly, refer to our
resources
about Optimising and Profiling code.

Not Using Version Control

For everything except for short throwaway scripts, or otherwise incredibly
short programs, there is no good excuse, not to use a version control system
(a.k.a: "revision control systems", "source control systems", or more in
general as part of "software configuration management"). This is especially
true nowadays given the availability of several powerful, easy to use,
open-source (and as a result free-of-charge), and cross-platform, version
control systems, that you should have not a lot of problems to deploy, learn
and use.

For more information and the motivation behind using version control systems,
see
the
relevant section out of the fifth part of “Perl for Perl Newbies”
for more discussion about the motivation behind that, some links and a
demonstration.

Some links for further discussion:

	
The Better SCM Site

	
The Free Version Control
Systems Appendix of Producing Open Source Software.

	
The Wikipedia
List
of revision control software.

	
“You
Must Hate Version Control Systems” - a discussion on Dave Cross’ blog
about best practices in the software development industry.

Writing Automated Tests

Automated tests help verify that the code is working correctly, that bugs
are not introduced due to refactoring or the addition of new feature, and also
provide specifications and interface documentation to the code. As a result,
automated tests have been considered a good practise for a long time.

For more information about how to write automated tests, see
our page about
quality assurance in C.

Parsing XML/HTML/JSON/CSV/etc. without a tried-and-tested parser

You should not try to parse HTML, XML, JSON, CSV, and other complex grammars
using regular expressions, or worse - using manual character/string
tokenisation. Instead, use a tried and tested parsing library, which you should
be able to find using a web search.

Generating invalid Markup (of HTML/etc.)

You should make sure that the HTML markup you generate is
valid
HTML and that it validates as XHTML 1.0, HTML 4.01, HTML 5.0, or a
different modern standard. For more information, see
the
“Designing for Compatibility” section in a previous talk.

Capturing Instead of Clustering in Regular Expressions

If you want to group a certain sub-expression in a
regular expression,
without the need to capture it (into the $1, $2,
$3, etc. variables and related capture variables), then
you should cluster them using (?: …) instead of capturing
them using a plain (…), or alternatively not grouping them
at all if it's needed. That is because using a cluster is faster and cleaner
and better conveys your intentions than using a capture.

Buffer Overflows

Buffer overflows involve reading or writing after one end of the buffer
and can lead to exploitation, or crashes. More information can be found in
the Wikipedia
article.

Format String Vulnerabilities (printf/etc.)

When passing a non-literal-constant string as the first parameter to
“printf()”/sprintf()” and friends, one runs the risk of
format
string vulnerabilities (more information in the link). As a result, it
is important to always use a literal constant string to format the string. E.g:

Bad code

fgets(str,sizeof(str), stdin);
str[sizeof(str)-1] = '\0';
printf(str);

should be replaced with:

fgets(str,sizeof(str), stdin);
str[sizeof(str)-1] = '\0';
printf("%s", str);

One can also use the
relevant
warning flags of GCC and compatible compilers to warn and possibly generate an error for that.

Callbacks that do not accept a “void *” context variable

When writing C (and sometimes C++) code, make sure that whenever you accept
a function pointer as a callback, that it also accepts a
void * context variable, which would be passed to the function
as well. These variables are sometimes called “batons” because they are
passed around. Without this convention, it will be harder to instantiate
routines based on this interface, and multi-threading will be harder without
the use of thread-local-storage.

So don't do that:

Bad code

void my_sort(my_type * const array, const size_t count,
 int (*compare)(my_type *, my_type *));

And instead do that:

void my_sort(my_type * const array, const size_t count,
 int (*compare)(my_type *, my_type *, void *), void * const context);

Not Using a Proper Build System

It is a very good idea for C and C++ code to use a good build and configuration
system. There’s
a page listing some prominent alternatives. For simple setups, a make file
may be suitable, but more complex tasks require a configuration and build
system such as CMake.

Not Using a Bug Tracker/Issue Tracker

It is important to use a bug tracking
system to maintain a list of bugs and issues that need to be fixed in your
code, and of features that you'd like to work on. Sometimes, a simple file kept
inside the version control system would be enough, but at other times, you
should opt for a web-based bug tracker.

For more information, see:

	
Joel
on Software article about “Painless Bug Tracking”

	
“Bug
Trackers” list on Shlomi Fish’s “Software Construction and Management
Tools” page.

	
“Top
10 Open Source Bug Tracking Systems”

Sources of This Advice

This is a short list of the sources from which this advice was taken which
also contains material for further reading:

	
A large part of this document is derived from
a similar
document written earlier for the Perl programming language.

	
 The
Book "Perl Best Practices" by Damian Conway - contains a lot of good
advice and food for thought, but sometimes should be deviated from.
Also see the
"PBP
Module Recommendation Commentary" on the Perl 5 Wiki.

	
"Ancient
Perl" on the Perl 5 Wiki.

	
chromatic's "Modern Perl" Book and
Blog

	
The book Refactoring by Martin
Fowler - not particularly about Perl, but still useful.

	
The book
The Pragmatic
Programmer: From Journeyman to Master - also not particularly about
Perl, and I found it somewhat disappointing, but it is an informative book.

	
The list “How
to tell if a FLOSS project is doomed to FAIL”.

	
Advice given by people on
Freenode's #perl
channel, on the Perl Beginners mailing list, and on other Perl forums.

	
Advice given by people on Freenode’s ##programming channel and on other forums.

