
Spark - Pre-Birth of a Modern Lisp
Shlomi Fish <shlomif@shlomifish.org>

Table of Contents
Introduction ... 1
Some Spark Essentials ... 2

Spark is not another implementation of Scheme (or Common Lisp) 2
Spark will be a dynamic (so-called “scripting”) programming language 2
Spark aims to be popular and be actively used for real-world tasks 2
Spark does not aim to compete with C and friends ... 4
Spark will have a rich type system but won’t be strongly typed ... 4
Spark will be capable of being used for Scripting ... 4

Line Count: ... 5
Line Count Reloaded ... 5
Double-space a file ... 5
Number lines in each file ... 5
Note about command line magic ... 6

Spark will have nested namespaces .. 6
Spark will be more succinct than most Lisps, but not overly terse .. 6
Spark will be written in plaintext .. 8
Regexps and other important elements have dedicated syntax ... 8
C/Perl/etc. conventions .. 9
Spark will not encourage a proliferation of implementations ... 9
The first version of Spark will not be the ultimate Lisp .. 10

Why Lisp Has Been Unpopular ... 10
Some Implementation Details .. 11

Virtual Machine .. 11
Spark Licensing .. 11
Test-driven development .. 11
Documentation .. 12

Licence .. 12

Introduction
Spark is a Modern dialect of Lisp currently being planned. This document is not a formal functional (much
less technical) specification for it, but rather a briandump of some of the conclusions I (= Shlomi Fish)
have reached about the fundamentals of its behaviour. Nevertheless, some preliminary (and still subject
to change) specification of it will be given and some code examples will brought.

Beside contemporary Lisp dialects such as Common Lisp [http://en.wikipedia.org/wiki/Common_Lisp],
Scheme [http://en.wikipedia.org/wiki/Scheme_%28programming_language%29] and Arc [http://
en.wikipedia.org/wiki/Arc_%28programming_language%29], Spark draws a lot of inspiration from other
modern languages, paradigms, and technologies including Perl 5 [http://perl-begin.org/], Perl 6 [http://
en.wikipedia.org/wiki/Perl_6], Python [http://en.wikipedia.org/wiki/Python_%28programming_language
%29], Ruby [http://en.wikipedia.org/wiki/Ruby_%28programming_language%29], Java and Haskell
[http://en.wikipedia.org/wiki/Haskell_%28programming_language%29].

1

http://en.wikipedia.org/wiki/Common_Lisp
http://en.wikipedia.org/wiki/Common_Lisp
http://en.wikipedia.org/wiki/Scheme_%28programming_language%29
http://en.wikipedia.org/wiki/Scheme_%28programming_language%29
http://en.wikipedia.org/wiki/Arc_%28programming_language%29
http://en.wikipedia.org/wiki/Arc_%28programming_language%29
http://en.wikipedia.org/wiki/Arc_%28programming_language%29
http://perl-begin.org/
http://perl-begin.org/
http://en.wikipedia.org/wiki/Perl_6
http://en.wikipedia.org/wiki/Perl_6
http://en.wikipedia.org/wiki/Perl_6
http://en.wikipedia.org/wiki/Python_%28programming_language%29
http://en.wikipedia.org/wiki/Python_%28programming_language%29
http://en.wikipedia.org/wiki/Python_%28programming_language%29
http://en.wikipedia.org/wiki/Ruby_%28programming_language%29
http://en.wikipedia.org/wiki/Ruby_%28programming_language%29
http://en.wikipedia.org/wiki/Haskell_%28programming_language%29
http://en.wikipedia.org/wiki/Haskell_%28programming_language%29

Spark - Pre-Birth of a Modern Lisp

Some Spark Essentials
These are some of the guiding elements in the design of Spark.

Spark is not another implementation of Scheme (or
Common Lisp)

There are far too many implementations of Scheme out there, and probably too many of Common
Lisp. However, that is beside the point that we did not come to praise the existing dialects of Lisp, by
implementing them again.

Spark will be a completely different dialect of Lisp. It won’t be compatible with either Scheme (or any of
its implementations), Common Lisp or even with Arc. It will still be Lisp, though, as we hope you will see.

Spark will be a dynamic (so-called “scripting”)
programming language

Spark will be an alternative to such languages as Perl, Python, Ruby, PHP, Tcl, Lua or io-language, which
are all very different but have APIs to achieve similar ends and are used for similar tasks. Like them and
Lisp (which is one of the oldest dynamic languages) it will be able to determine a lot of behaviour at run
time and will support dynamic “eval”, call-by-name, run-time typing, run-time change of type for a datum,
multiple dispatch, polymorphic macros and other features of Lisp and other dynamic languages.

Some people have been referring to Perl and friends as "scripting languages" but that implies they are only
useful for scripts. See:

http://xoa.petdance.com/Stop_saying_%22script%22

While that article by Andy Lester illustrates the problem with labelling programming languages as
“scripting languages”, I still think saying “script” and “scripting” is a valid way to distinguish a trivial
program from an application. For example /usr/bin/gcc is essentially a script written in C, which
just passes controls to the various compilation stages. When we type gcc at the command line, we are
running this script that does the hard work of doing the compilation for us. (/usr/bin/gcc should not
be confused with GCC, the GNU Compiler Collection which is a compilation framework for C, C++ and
other languages, and is a crucial piece of the open-source UNIX-like operating systems infrastructure).

For an “in your face” anti-thesis to the aversion to call languages scripting languages see Larry Wall’s
“Programming is Hard. Let’s Go Scripting”:

http://www.perl.com/pub/a/2007/12/06/soto-11.html

Spark aims to be popular and be actively used for real-
world tasks

While other general purpose Lisps such as Common Lisp, Scheme, Arc or Clojure have been influential
and have some followers and users, none of them are actively used with the same popularity as Perl,
Python, Ruby or PHP are. Spark aims to be a popular lisp dialect which will be actively used for real-
world tasks, not just toy or experimentation code.

Eventually, it is our hope that some people will get paid to maintain Spark code. Some of them against
their best preferences, like some people now are maintaining Perl 5, PHP or even Python code while

2

http://xoa.petdance.com/Stop_saying_%22script%22
http://www.perl.com/pub/a/2007/12/06/soto-11.html

Spark - Pre-Birth of a Modern Lisp

preferring a different language. (Simply because it puts bread on their table, and they cannot get paid to
write something else.)

Python? Yes! Google for example has been hiring several Perl 5 or even Perl 5 and Perl 6 programmers
and instructing them to program mostly in Python. I’ve known two or three of them myself. Many of
them tolerate or even like Python enough to program in it, but many of them still prefer Perl and consider
themselves as Perlers at heart. But Google gives very good conditions and many Perl programmers (despite
a huge demand for them) are treated badly or have advanced to better paying positions. And naturally a
lot of the “younger generation” (most of them) bought the hype that you shouldn’t need to learn Perl if
you already know PHP, or Python or Java or whatever.

In any case, Spark aims to become roughly as popular as any of Perl/PHP/etc. It is not guaranteed that we
succeed , but we still would like to try. What can we do to increase our chances?

Paul Graham has written about what makes a language popular [http://www.paulgraham.com/
popular.html]. Arguably, he failed to make Arc as popular as he wanted, even after it was released (and
may have violated some of his own guidelines), but the guidelines in the article are still sound (ad-hominem
anecdote put aside).

One can spend a lot of time expanding on Graham’s points and adding more stuff (including possibly
good timing and luck and possibly a lot of financial backing can help, which most open-source enthusiasts
don’t have).

However, it is important to note that this is our ultimate goal. Some languages didn’t have a lot of financial
backing before they got popular - Perl, Python, PHP and Ruby are examples of it. Can we do the same?

None of the P-languages are perfect. Someone on #scheme gave me a moderate list of must have items
out of which Perl, Python, PHP and Ruby each violate at least one and Scheme and Common Lisp none.
I can quote him here as the channel is publicly logged.

I’m not going to try to violate any of them (or any of the many common sense “never-do-it”’s that PHP
alone has violated, to say nothing of the rest) on purpose in hope it will save me from the evil eye of having
a decent language. But I don’t think languages succeed because they are bad but because they offer at least
one awesome advantage. For example Perl 1 offered the ability to write pseudo-shell scripts in a much
more robsut and powerful way than awk, sed, sh and csh and a much easier way than C did. (Although
still very primitive by the standards of Perl 5.). By the time Perl 4 was abandoned in favour of Perl 5 ,
Perl 4 was already the de-facto standard for clueful sys admins who valued their sanity. And I recall when
Perl 5 was the only real solution for writing CGI scripts that you could use because I was hired to work
as a web developer at that time.

PHP was similar enough to Perl 5 to fool people into believing it was adequate (while messing up the
internal behaviour and core language royally) and offered more ubiquity as far as setting up on web-hosts
was concerned (which Perl 5 is still trying to catch up). You can now download very powerful and gratis
content management systems in PHP (and other gratis web applications) and run them out of the box
on your cheap hosting and call yourself a webmaster, which would be hard with any other UNIX-based
solution. PHP as a language has many issues, but they got some parts of the implementation needs right,
and this is what made it popular.

We need to find some good reasons for people to become hooked on Spark. Spark probably won’t be
perfect because I am not perfect and don’t know all there is to know about language design. However,
neither are Scheme and Common Lisp. But even if Spark doesn’t have so many quirks like PHP or Perl (or
even Python) it should be an attractive platform for people to experiment with, write scripts in daily, write
toy programs and serious applications, and then one day we may get a killer app like Ruby’s Ruby on Rails.

(Hopefully, we won’t get the added RoR hype, which I admit is based on viral marketing and community
efforts, but was hype nonetheless. Perl and PHP were never strongly hyped, and they seem to have been
doing fine without it.)

3

http://www.paulgraham.com/popular.html
http://www.paulgraham.com/popular.html
http://www.paulgraham.com/popular.html

Spark - Pre-Birth of a Modern Lisp

Spark does not aim to compete with C and friends
Spark does not aim to fill the same ecological niche as C, C++ Objective-C, etc. - much less assembly. C
and friends have been the de-facto standard for writing applications when some or all of certain constraints
have been met:

http://www.shlomifish.org/philosophy/computers/when-c-is-best/

While their use have lately been diminishing somewhat due to the increasing attractiveness of the Java
or .NET frameworks or the various dynamic languages (Perl/Python/PHP/Ruby/etc.) they are nevertheless
still very much in vogue and even the backends for the more high-level virtual machines are written in
C and C++ .

There have been some efforts to compete with C and C++ on their own turf such as D [http://
en.wikipedia.org/wiki/D_%28programming_language%29] or Ecere [http://www.ecere.com/] (and earlier
efforts such as Ada 95, or Object Pascal) and they can be commended for that, but unlike them, Spark does
not aim to replace C in most of the valid use cases for a C-like language.

Spark will have a rich type system but won’t be strongly
typed

Like Common Lisp, Python, Ruby and Perl 6 and to some extent unlike Perl 5, Spark will have a rich type
system. However, it won’t be strongly typed like Haskell. If Spark had been going to be strongly typed, it
could no longer have been considered a Lisp, and I happen to like dynamic typing.

A variable can be assigned different values with different types during its run-time, and functions would
be able to accept variables of any type (unless they specifically forbid it).

The Spark type system will be extendable at run time, and will be analogous to its Object Oriented
Programming (OOP) system. As a result, one would be able to call methods on pieces of data, on
expressions, on S-expressions, and on functions, macros, classes and method declarations, and on their
application.

In Spark “everything will be an object”, but unlike Java, it won’t be overly-OO. One won’t need to
instantiate a class and declare a method just to print “Hello World” on the screen. This will work:

$ spark -e '(say "Hello World")'

Or:

$ spark -e '(print "Hello World\n")'

Or:

$ spark -e '(-> "Hello World" say)'

Is a simple macro that converts (# obj method args) to (method obj args) and is used
for some syntactic sugar.

Spark will be capable of being used for Scripting
While Spark should not be called a scripting language, just as the name is a misnomer for Perl 5 or for PHP,
it should in fact be capable of writing scripts, including command line scripts at the prompt or the REPL
(Read-Eval-Print-Loop). Here are some examples for command line scripts. Most of these are taken from

4

http://www.shlomifish.org/philosophy/computers/when-c-is-best/
http://en.wikipedia.org/wiki/D_%28programming_language%29
http://en.wikipedia.org/wiki/D_%28programming_language%29
http://en.wikipedia.org/wiki/D_%28programming_language%29
http://www.ecere.com/
http://www.ecere.com/

Spark - Pre-Birth of a Modern Lisp

the descriptions in Peteris Krumins’ "Famous Awk One-Liners Explained" [http://www.catonmat.net/
blog/awk-one-liners-explained-part-one/] series (which is now in the process of being augmented with
“Famous Perl One-Liners Explained”). I’m not going to study the Awk implementations due to lack of
knowledge in Awk and lack of will to learn it as I already know Perl 5 - its far superior superset, but
I’ll implement something similar in Spark (Hopefully, Peteris will feature a “Famous Spark One Liners
Explained” feature in his blog someday too).

Line Count:

$ spark -e '(foreach (fh ARGV) (++ i)) (say i)' [Files]

Line Count Reloaded

$ spark -e '(: say len getlines fh ARGV)' [Files]

(: …) serves the same purpose as Haskell’s $ - to chain function calls without too many nested
parameters. So this script is equivalent to saying:

$ spark -e '(say (len (getlines (fh ARGV))))' [Files]

But is shorter and cleaner.

Double-space a file

$ spark -pe '(say)'

(Think Perl)

Number lines in each file

$ spark -ne '(say "${^LINENUM} ${^LINE}")'

Here we can see the string interpolation of variables in action. ${….} interpolates a single variable, while
$() is an S-expression. Aside from that spark will also have sprintf, sprintf with named conversions similar
to Python [http://metacpan.org/release/Text-Sprintf-Named] and something as similar as possible to Perl’s
Template Toolkit (while still being Sparky). I find Common Lisp’s format to be hard to understand and
much less flexible than Template Toolkit so I’m going to drop it.

Like in Perl 5 the ^VARNAME variables are reserved and are usually in all-capitals. Unlike Perl 5 (or
Common Lisp), we are not a Lisp-2 and we use the same symbol namespace for everything (like Scheme).
So we can put assign a lambda (could be (fun …) , (sub …) , (lambda …) or (function …
) - all exact synonyms) to a variable and call it with a value:

(my square)
(:= square (fun (x) (* x x))) ; Or (<- square) but I’m hazy about (= square)
(say (square 5)) ; Prints 25 followed by a newline.

Like in Perl 5, however, a symbol table has an arbitrary amount of slots which we can put values. So we
can say:

(say :to (fh STDERR) "Warning, Will Robinson.")

Which will print to STDERR.

In the case of the :to named parameter to (say) (or to (print) or to (printf) or whatever we
have or define) we don’t need the explicit (fh …) (= file handle) call but it won’t hurt.

5

http://www.catonmat.net/blog/awk-one-liners-explained-part-one/
http://www.catonmat.net/blog/awk-one-liners-explained-part-one/
http://www.catonmat.net/blog/awk-one-liners-explained-part-one/
http://metacpan.org/release/Text-Sprintf-Named
http://metacpan.org/release/Text-Sprintf-Named
http://metacpan.org/release/Text-Sprintf-Named

Spark - Pre-Birth of a Modern Lisp

Note about command line magic

Out of convenience the -e and the rest of the -p, -n , etc. flags will involve some magic manipulation
of the S-expression inside -e or inside the script. It also loads some convenient modules. However,
sometimes we may wish to convert a command line script to a full application. That’s what the --dump-
code=code.spark flag is for. It dumps the code of the program to a file containing code that can be
run with just spark code.spark.

For example:

$ spark --dump-code=say.spark -pe '(say)'
$ cat say.spark
(no strict) ; you should probably remove that.
(use re)
(use cmd-loop)
(cmd-loop.set-implicit-print 1)
(say)
$

Like all examples here, this is just for the sake of the illustration. Until version 1.0.0 comes out, everything
can change. But the concepts will remain the same.

We encourage Perl, Ruby and other dynamic languages with rich command line interfaces, to steal the --
dump-code idea. Maybe one day someone will become a multi-millionaire from selling a 300K Lines
program that evolved from a simple spark/perl/ruby --dump-code=code…. -e '….\'
invocation (after a successful plain -e invocation).

Spark will have nested namespaces
Spark will have a similar namespace system to Perl 5, with nested namespaces, and the ability to selectively
import symbols from namespaces at run-time. Similarly to http://metacpan.org/release/Sub-Exporter and
as opposed to C++ where importing symbols from namespaces is an all-or-nothing operation, and so mostly
unusable.

As opposed to Java, one would be able to import several symbols from a namespace at once and grouped
by tags. Sub-Exporter gives much more than that for Perl 5, but I don’t recall all the details from the
slides I saw about it. :-) .

Like Perl 5 one will be able to import symbols at run-time.

As opposed to Perl 5, classes won’t be automatically associated with namespaces, and a namespace may
contain one or more classes (or none). Like CPAN and unlike Java (org.apache.jakarta…), we will
not enforce namespace purity, but hopefully there will be a better mechanism than the current CPAN and
PAUSE (Perl Authors Upload Server) to be able to fork, spin-off, or branch CSAN distributions or choose
between competing alternatives. CPAN6 [http://cpan6.org/] (orthogonal to Perl 6) is worth a look for some
ideas, as is "The Zen of Comprehensive Archive Networks" [http://www.cpan.org/misc/ZCAN.html]

Spark will be more succinct than most Lisps, but not
overly terse

One thing notable about Scheme and Common Lisp is that many identifiers and keywords there are
excessively long. (string#integer) , (lambda) , (concatenate) , etc. Yes, you can easily
assign aliases to them, but it:

6

http://metacpan.org/release/Sub-Exporter
http://cpan6.org/
http://cpan6.org/
http://www.cpan.org/misc/ZCAN.html
http://www.cpan.org/misc/ZCAN.html

Spark - Pre-Birth of a Modern Lisp

1. Takes time to write and more time to maintain.

2. Will require you to carry and update a meta-syntactic package in all your code.

3. Would make your code harder to understand to the unfamiliar.

So Spark will provide short identifiers for most common operations (either macros or functions) by default.
There won’t be too many long aliases because they will increase the core and require more time to learn
and become familiar with for the uninitiated, but some of them will be considered.

For example, a variation on my favourite Scheme statement is:

(vector-set! myarray idx (+ (vector-ref myarray idx) 2))

Which in Perl is:

$myarray[$idx] += 2;

And in Spark would be:

(+= (myarray idx) 2)

Which isn’t much worse than Perl. We’re not trying to beat Perl 5, Perl 6 or much less J in code Golfing
in every case - this isn’t a peeing contest. We’re just trying to make easy tasks easy.

Furthermore, while +=, -=, /= and friends will be defined there will be a macro (that will be used defined
by the prelude and used there) to define your own +${op}=+ operators. Like (list=) or (myfunc=).

And as you see we will try very hard that every sane expression can become an lvalue.

And in case, you’re worried there will be a “+\+” and “--” operators too, with post-increment/post-
decrement and pre-increment/pre-decrement variations.

Finally, by inspiration from Arc, we decided to do something about excessive parens. So we will have
a (with (k1 v1 k2 v2 k3 v3) ….) scoping instead of the unwieldy Scheme (let*) and
(letrec) (both will be easily replaceable by +(with…) with some macro or VM trickery.).
And we’ll have a C-style for-loop instead of the obscure +(do…) and a while
loop, and a Perl 5/Perl 6-style foreach loop, and maybe other loops too. And you can always use recursion.

However we’re not going down the Arc route of assigning extremely short, and hard to pronounce and
grep for identifiers. (fn) How do you pronounce it? fnn…. There’s no such sound in Hebrew, so it’s
verboten by your Hebrew-speaking overlords. We like (fun…) because it puts the fun back in function
(“Functional!! Parallelism!!!!” - oh wait! Wrong language.), and we like (sub …) because it puts the
“sub” back in subroutine. And all Hebrew speakers will rejoice because they can pronounce “cat” exactly
like “cut” and Perl like Pérl and Lisp like Leesp, and they can pronounce TeX and LaTeX with a honest-
to-god khaph [http://en.wikipedia.org/wiki/Kaph] (or a Heth [http://en.wikipedia.org/wiki/Heth] if they
put their mind to to it.), and the god of the Israelite programmers saw there were only 5 and a half vowels
and he was pleased.

Seriously now, I don’t like (fn) because it’s hard to pronounce, doesn’t sound right when you read it to
your mind’s ear, and is obnoxious. While being succinct is a noble goal, picking psychologically-sound
and intuitive conventions is also important. I recall searching the Arc tutorial and documentation for a
(not) function only to found it was spelled (no):

(if (no soup) (print "soup is false"))

“If no soup”. Oh no, no! No soup for you. For one year!!! We’re going have (not) like everybody else,
and also a “!” alias .

7

http://en.wikipedia.org/wiki/Kaph
http://en.wikipedia.org/wiki/Kaph
http://en.wikipedia.org/wiki/Heth
http://en.wikipedia.org/wiki/Heth

Spark - Pre-Birth of a Modern Lisp

(if (not soup) (print "soup is false"))

(if (! soup) (print "soup is false"))

So we’re going to borrow stuff from Arc, but only when it makes sense. Spark should have an up-to-date
documentation manual right from the very start, which will be kept as up-to-date as possible, and naturally
will have automated tests, which would serve as automatically verifiable examples. Arc really had none,
and often you needed to read the implementation code, or one of the example web applications.

Spark will be written in plaintext
What do I mean? sbcl forces to write a long command line just to run a program from the command
line and exit. Arc was not better and could not execute a program directly. I added this functionality to
the Arc git repository myself.

No, the REPL won’t be gone in spark, and good old (load) will still be there. But you can also do:

$ cat hello.spark
(say "Hello World!")
$ spark hello.spark
Hello World!
$

Or put /usr/bin/env spark or whatever in your sha-bang and it will work.

A spark program will do its thing, execute to the finish and gracefully exit.

We will still have a REPL, that can be used from the command-line or from within Emacs SLIME or
within IDEs such as Eclipse. Even Vim/gvim may get a REPL if it gets something like an embedded shell
like Emacs has.

Spark programs can be abstract syntax trees, a network of objects, some compiled bytecode or flying
unicorn ponies who drop candy. Nevertheless, they are still read from text. If you want to change the state
of REPL until you forget what it has now or it changes unbeknowest to you (“Parallelism!!!!”) it’s an
option. But you can still write your tests, run, debug, change, run debug, etc. Hopefully with automated
tests for extra bonus points in Software Management sainthood.

Regexps and other important elements have dedicated
syntax

But don’t worry - it’s in the “re” module and it uses read-macros/ char-macros / text macros. With the help
of such macros one can even create a parser for Ruby-style syntax (or Perl’s - ;-)), but it’ll be actively
discouraged.

So for example:

$ spark -pe '(~ ^LINE (re.s {ba([zro])(\s+)mozart} ma$1$2bozart))'

And it will replace the first baz[whitespace]mozart with maz[whitespace]bozart , etc. The
\~ operator is similar to Perl 5’s =\~ or perl-5.10.0’s or Perl 6’s ~~ or in that it does a smart matching
of a datum (which could be a list) to an abstract operation.

We can also use other delimiters instead of {…} in the (re.s…) read macro:

$ spark -pe '(~ ^LINE (re.s /ba([zro])(\s+)mozart/ ma$1$2bozart))'

8

Spark - Pre-Birth of a Modern Lisp

C/Perl/etc. conventions
1. Spark will be case-sensitive

2. Unicode (UTF-8) aware-and-safe

3. With C-style escapes - backslash does the right thing.

Spark will not encourage a proliferation of
implementations

As you all know Lisp is a family of languages, which includes Lisp, Scheme Arc, Emacs Lisp, etc. and
some people may say also Dylan, and that Perl 5, Perl 6, Ruby, Python and most other modern languages
have many Lispisms in them up to being able to translate many programs written in Lisp to them line by
line. (See Paul Graham Revenge of the Nerds for the inspiration [http://www.paulgraham.com/icad.html])

However, some people on #scheme [irc://irc.freenode.net/#scheme] told me that Scheme, due to the
proliferation of incompatible implementations, was not one Lisp dialect, but a family of languages
called “Scheme” with a common denominator. While I’m all for Germanic languages [http://
en.wikipedia.org/wiki/Germanic_languages] being a major sub-division of Indo European languages
[http://en.wikipedia.org/wiki/Indo-European_languages], also with several mutually incomprehensible
languages, I’m not sure I want a “Scheme programming language”-family within Lisp. It generally
shouldn’t happen with “man-made” and computer-understood languages that are more under our control.

As a result, I’d like Spark to remain a single language with only a few implementations, possibly only one
for each target virtual machine (e.g: Parrotcode, the JVM, or the .NET CLR, or a C-based interpreter).
Spark will be defined and compatible even in its internals, its foreign function interface, and “standard
library” (which will also have something more like CPAN is for Perl 5, where every J. Random Hacker
can upload their own INI parser, under a different namespace), and core functionality.

Spark will have an open-source source code (GPL-compatible BSD-style or possibly partially Artistic 2.0
in case some of the code is derived from Parrot code), which naturally can be span-off, branches, and
forked. However, none of them pose a threat to the fact that the Spark implementation will remain unified.

If someone changes Spark in incompatible ways, it may either die, or forked into a new language. This
language will also be Lisp and may be Spark-like but it won’t be Spark. Perl 5 which only has one major
implementation (perl5 - currently at perl-5.10.0), recently span off kurila [http://metacpan.org/
release/kurila] which is fork of perl 5 that is incompatible with it and with Perl 5, on purpose. Nevertheless,
while Kurila may be considered a a language in the Perl family, it is not Perl 5 any more than Perl 4 , Perl 6 ,
Sleep [http://sleep.dashnine.org/] or whatever are. So Perl 5 has still not become a family of incompatible
implementations.

Another factor that will dissuade people from creating multiple implementations of Spark is that as opposed
to Scheme, creating a Spark implementation from scratch is not going to be trivial. It’s not that Spark
will be needlessly complixified, but that it would be needfully complex to implement to be an expressive,
feature-rich and high-quality language.

To quote Bjarne Stroustrup (the creator of C++) from his FAQ question about Java [http://
www.research.att.com/~bs/bs_faq.html#Java]

Much of the relative simplicity of Java is - like for most new languages - partly
an illusion and partly a function of its incompleteness. As time passes, Java will
grow significantly in size and complexity. It will double or triple in size and grow
implementation-dependent extensions or libraries. That is the way every commercially

9

http://www.paulgraham.com/icad.html
http://www.paulgraham.com/icad.html
irc://irc.freenode.net/#scheme
irc://irc.freenode.net/#scheme
http://en.wikipedia.org/wiki/Germanic_languages
http://en.wikipedia.org/wiki/Germanic_languages
http://en.wikipedia.org/wiki/Germanic_languages
http://en.wikipedia.org/wiki/Indo-European_languages
http://en.wikipedia.org/wiki/Indo-European_languages
http://metacpan.org/release/kurila
http://metacpan.org/release/kurila
http://metacpan.org/release/kurila
http://sleep.dashnine.org/
http://sleep.dashnine.org/
http://www.research.att.com/~bs/bs_faq.html#Java
http://www.research.att.com/~bs/bs_faq.html#Java
http://www.research.att.com/~bs/bs_faq.html#Java

Spark - Pre-Birth of a Modern Lisp

successful language has developed. Just look at any language you consider successful on
a large scale. I know of no exceptions, and there are good reasons for this phenomenon.
[I wrote this before 2000; now see a preview of Java 1.5.]

— Bjarne Stroustrup FAQ Question about Java

(I should note that, like many other FOSS hackers, I normally prefer C over C++ , and am not a big fan of
C++ for most stuff. However, Stroustrup is a wickedly smart guy, and despite whatever faults his language
may have, he speaks straight, and what he says here seems to make a lot of sense).

Spark hopefully won’t be as complex as C++ is today from the beginning, but will also be more complex
than Scheme to allow for better expression and faster development. It also doesn’t aim to be an incremental
improvement over Scheme (or Common Lisp) which seems to be the case for Arc and Clojure, but rather
something like Perl 5 was to Perl 4 or Perl 6 is to Perl 5 : a paradigm shift, which Lispers and non-Lispers
alike will appreciate.

The first version of Spark will not be the ultimate Lisp
Some features of Common Lisp or other Lisps will be absent in Spark, some things will be harder to do
than Common Lisp or even other Lisps or other non-Lisp programming languages, and some things will
not work as expected at first (bugs, etc.). A lot of it will be caused due to the fact that the primary author
of this document does not consider himself a Scheme expert (and is very far from being a Common Lisp
expert) and just likes Lisp, Perl 5 and other languages enough to want to promote them.

As a result, some estoric features of the popular Lisp languages today or some languages that he has not
fully investigated yet, won’t be available at first. This is expected given his ignorance, enthusiasm and
anxiety to get something out of the door first.

While he would still be interested in learning about whatever core library or meta-programmatic features
other languages have that may prove useful for the core Spark language (or alternatively cool APIs that
you think should be ported to Spark). But he has little patience to learn entire languages “fully” (if learning
any non-trivial language fully is indeed possible) before starting to work on Spark. And often ignorance
is a virtue.

So the first versions of Spark will still have some room for improvement. Most of it may hopefully be
solvable using some meta-syntactic or meta-programming user-land libraries (as is often the case for Lisps
and other dynamic languages). As for the rest, we could consider them bad design decisions that still add
to the language’s colour and make it a bit more interesting to program in than a 100% perfect language.
Sometimes perfection is in imperfection.

Why Lisp Has Been Unpopular
Mark Jason Dominus gives a case study called “Why Lisp Will Never Win” [http://perl.plover.com/
yak/12views/samples/notes.html#sl-39] in his “Twelve Views of Mark Jason Dominus”. He gives the
following awk one-liner:

awk 'BEGIN {FS=":"}; $6=="/sbin/nologin" {print $1}' /etc/passwd

Which a member of comp.lang.lisp suggested that Lisp should implement something similar to. The
response was that "with only a couple of new utility macros & functions", it could become:

(with-lines-from-file (line "/etc/passwd")
 (let ((fields (string-split line :fs #\:)))
 (when (string= (aref fields 5) "/sbin/nologin")
 (format t "~A~%" (aref fields 0))))))

10

http://perl.plover.com/yak/12views/samples/notes.html#sl-39
http://perl.plover.com/yak/12views/samples/notes.html#sl-39
http://perl.plover.com/yak/12views/samples/notes.html#sl-39

Spark - Pre-Birth of a Modern Lisp

Which as Dominus notes is a little over 2.5 over the length of the awk program. (but still required these
macros). Naturally no one will opt to write it instead. So the problems with Common Lisp is ground-up
verbosity, lack of common idioms for commonly performed tasks, and lack of motivation to use it for
common, everyday (sometimes even throwaway code).

So what will it look like in Spark?

spark -inaF/:/ '(if (= (^F 5) "/sbin/login") (say (^F 0)))' /etc/passwd

(we borrowed the (array idx) notation from Arc, because an array ref object is overloaded with a
method to get the index.

One can find other resources about what makes a language popular here:

1. http://www.paulgraham.com/popular.html - “Being Popular”

2. http://www.paulgraham.com/power.html - “Succinctness is Power”

Some Implementation Details
These are some implementation details that are still subject to change:

Virtual Machine
I’m leaning towards making the initial Spark implementation use Parrot [http://www.parrot.org/] as its
virtual machine. LLVM [http://llvm.org/] was suggested, and while it seems nice and powerful, it requires
the compiler front end to be written in C/C++ which will cause the time to market to grow considerably. I
don’t rule out a later implementation of Spark to LLVM, but during the initial implementation we would
like to change things rapidly and quickly, and C or C\++ will slow us down considerably.

I’m not keen on using the Java Virtual Machine, due to Java’s long historical reputation of being
“enterprisey” and non-hacker friendly (see http://www.paulgraham.com/javacover.html), and due to the
fact it has a slow startup time, and that it feels very “sluggish”/non-responsive. Again, I don’t rule out a
future port of Spark to the JVM.

The Parrot VM seems very suitable for dynamic languages, and it is progressing nicely. The Parrot
languages Page [http://www.parrot.org/languages] already lists several implementation of Scheme which
can serve as the basis for a Spark implementation, so I’d like to start there.

Spark Licensing
Since we’re building on Parrot, the licence of the non-original code will be the Artistic License 2.0, which
is free, open-source, GPL-compatible and somewhere between a weak copyleft licence (e.g: the LGPL)
and a permissive licence (e.g: the 2-clause or 3-clause BSD licences). The original code will be written
under the MIT/X11 licence, which is a very permissive BSD-style licence that specifically allows sub-
licensing. To avoid legal confusion, every file should contain an explicit “Licensing” notice to indicate
under which license it is.

Test-driven development
As opposed to Arc, which shipped with no automated tests, Spark will be developed in a Test-driven
development fashion. Namely, it will have a comprehensive test suite that will need to fully pass upon any
commit to the trunk (or “master” or whatever the main branch is called).

11

http://www.paulgraham.com/popular.html
http://www.paulgraham.com/power.html
http://www.parrot.org/
http://www.parrot.org/
http://llvm.org/
http://llvm.org/
http://www.paulgraham.com/javacover.html
http://www.parrot.org/languages
http://www.parrot.org/languages
http://www.parrot.org/languages

Spark - Pre-Birth of a Modern Lisp

The code of the tests is not expected to be authoritative for how the final version of the language will
behave. Rather, some future design decisions will require changing the code of a lot of the tests accordingly.

I still don’t have a clear idea of how to design a lot of “big picture” Spark design decisions. While I believe
that design is good, I also think that Spark should be designed incrementally, and that we can expect many
design decisions to change. Test-driven development, while accepting the fact that often a lot of testing
code will need to be modified, will allow us to do that.

Documentation
It is our plan to keep documentation for the Spark language using POD, PseudoPod, AsciiDoc or a similar
language so people will be able to learn it, without the need to delve into many tests or the core code
itself. The documentation will be kept mostly up-to-date, but we can expect it to grow somewhat out-of-
sync with the code.

We’re not planning to make exhaustive documentation - for example, the internals of the front-end will
not be very well documented, as they will tend to get out-of-sync with the code, and in general the code
should be structured to be self-documenting and easy to understand using refactoring.

Licence
This document is copyright by Shlomi Fish [http://www.shlomifish.org/], 2009 and is available under
the Creative Commons Attribution 3.0 Licence [http://creativecommons.org/licenses/by/3.0/], or at your
option any later version of it.

In addition, any code excerpts, unless derived from other sources are made available under the MIT/X11
License [http://www.opensource.org/licenses/mit-license.php] .

12

http://www.shlomifish.org/
http://www.shlomifish.org/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.opensource.org/licenses/mit-license.php
http://www.opensource.org/licenses/mit-license.php
http://www.opensource.org/licenses/mit-license.php

	Spark - Pre-Birth of a Modern Lisp
	Table of Contents
	Introduction
	Some Spark Essentials
	Spark is not another implementation of Scheme (or Common Lisp)
	Spark will be a dynamic (so-called “scripting”) programming language
	Spark aims to be popular and be actively used for real-world tasks
	Spark does not aim to compete with C and friends
	Spark will have a rich type system but won’t be strongly typed
	Spark will be capable of being used for Scripting
	Line Count:
	Line Count Reloaded
	Double-space a file
	Number lines in each file
	Note about command line magic

	Spark will have nested namespaces
	Spark will be more succinct than most Lisps, but not overly terse
	Spark will be written in plaintext
	Regexps and other important elements have dedicated syntax
	C/Perl/etc. conventions
	Spark will not encourage a proliferation of implementations
	The first version of Spark will not be the ultimate Lisp

	Why Lisp Has Been Unpopular
	Some Implementation Details
	Virtual Machine
	Spark Licensing
	Test-driven development
	Documentation

	Licence

