Thoughts about the Best Introductory Language

Shlomi Fish

 <shlomif@shlomifish.org>

 Shlomi Fish’s Homepage

Copyright © 2006 Shlomi Fish

This work is licensed under the Creative Commons Attribution 2.5 License (or at your option a greater version of it).

Introduction

 The purpose of this essay is to contemplate what is the best
 introductory programming language to teach for beginning programmers,
 or for a beginning programmer to learn on his own.

 First, I will mention several approaches taken by other people who
 discussed this issue before, and try to explain why I disagree with
 them. Then I will propose and explain some relations (“Language A
 should be learned before Language B”) that are good to follow. After
 that, I will propose my verdict, and discuss some orthogonal
 alternatives. Finally, I will discuss some different types of
 teaching and how each should be conducted differently.

 As for how I started programming myself, I should note that I learned
 BASIC at the age of 10 (back in 1987), and then learned C when I was
 15 years old (in 1992);
 I later learned
 Visual
 Basic for Applications and when I was 19 years old I was
 introduced to Perl and UNIX at my workplace, which was a web site
 creation shop (back in 1996, when the Internet started to become
 popular). I have later learned other languages and
 technologies and still do to a large extent.

 One note that is in order is that you shouldn’t feel bad about
 having followed a different ordered in the programming languages you’ve
 learned. By all means, you can still learn things on your own
 otherwise.

The Various (Wrong) Approaches to Introductory
 Programming Languages

Linda McIver’s Thesis Approach

 Linda
 McIver published along with Damian Conway
 a paper
 titled “Seven Deadly Sins of Introductory Programming Language
 Design” that explains the problems they found with
 most popular introductory programming languages. The article makes
 a very good read.

 Later on, her
 Ph.D. thesis introduced her idea of a good
 introductory programming language.

 Now, if I had to summarise this language in one word it would be
 this: sexless. It’s incredibly limited, not flexible, and not fun.
 It has no pointers or references and instead relies on nested
 structures and arrays. There are two basic data types - a number
 and a string. The language does not have functions
 as first-order objects, closures, or objects and classes in the
 Object Oriented Programming sense. Furthermore, it has very few
 ways for one to express oneself. As a result implementing many
 algorithms would be very difficult in it.

 When I program, I’m using every tool in my arsenal, and expect
 the language to be powerful enough to be able to translate my
 thoughts into code. McIver’s language is too limited and limiting,
 to be effective for programming in, and being planned exclusively
 for beginners, lacks the richness and interesting idioms that
 make programmers like or even love their languages.

 This is a language that I won’t enjoy programming in. And I
 don’t believe a professor who doesn’t enjoy programming in a
 certain language can effectively convey it to his students, while
 lacking the enthusiasm and love for the tool he chose.

 McIver’s approach is flawed in the sense that she is trying too
 hard to save the students from all possible problems they may
 encounter in trying to understand their introductory language.
 However, programming is hard to learn, and learning the first
 language is always difficult. Creating a “flawless” language that
 lacks any sex-appeal is not going to make it better, but much
 worse as both the professors and programmers will detest it.

The “Structure and Interpretation of Computer Programs”
 Approach

 “Structure and
 Interpretation of Computer Programs” (or SICP
 for short) is a classic text and course material on
 programming, taught at MIT and many other universities
 around the world. SICP uses Scheme (a minimalistic dialect
 of Lisp) as its exclusive language to cover many important
 programming and meta-programming concepts.

 I have read the book in my third semester of the Technion (without
 doing the exercises) and later took both of the SICP courses that
 were given by my department. I learned a lot from the book, and
 while the courses did not teach me too much new, I did enjoy
 working on the exercises.

 However, there are several problems with teaching Scheme as an
 introductory language. The first is that it is too impractical.
 Scheme does not have system primitives that more modern languages
 take for granted like ones for random file and directory I/O,
 sockets, graphics primitives, Graphical User Interface (GUI),
 etc. Moreover, the core language is limited and most
 practical code tends to become very verbose in it. For example,
 whereas in Perl one would write $myarray[$i]++
 to increment an array element by one, in Scheme it would be:
 (vector-set! myarray i (1+ (vector-ref myarray
 i))).

 Most of the SICP exercises are about number theory, recursion,
 and a lot of other relatively abstract stuff, and too few are
 about real world and exciting tasks: writing games and other
 demos, working with files, writing scripts and utilities,
 networking and working with the WWW, etc. In fact, the Scheme
 standards define too few useful things. Most of
 the
 dazzling number of different Scheme implementations all
 extend the language in several ways, but all have their own idea
 of how to do it. Compare it to Perl, Python and friends which have
 one main C-based implementation, or to C where the standard
 library is actually quite useful.

 I believe an introductory language has to grow with you. When I
 studied BASIC, I was able to use it for programming games,
 graphical demonstrations and animations, scripts, and other uses.
 I continued to use BASIC on DOS and Windows, until I learned the
 much-superior Perl, which I’m using today.

The “Teach in C” Approach

 In his “Back to Basics” essay,
 Joel Spolsky gave a case for teaching C as an introductory
 language instead of more high level languages. His argument is
 that programmers will end up writing sub-optimal code because
 some low-level elements of dealing with strings and arrays are
 abstracted away in higher-level language.

 C and C++ have been popular introductory languages for teaching
 programming for many years now. While some schools have switched
 to teaching Java or a different language, C and C++ are still very
 popular.

 However, C has one major deficiency: it’s too close to the
 processor to be useful. In order to perform an operation on two
 objects, one should allocate them first, perform the operation,
 and then take care of freeing both objects and the result (to say
 nothing of edge cases where allocating or freeing may fail.).

 All this work to do something that in high level, garbage
 collected, languages is as simple as
 $result = $object1 OP $object2;. From my
 experience with Technion students, they are often get so bogged up
 in the technicalities of working with C instead of getting quick,
 dirty and useful code running.

 A good introductory programming language should allow you to write
 a lot of useful code quickly, and not slow you down with many
 low-level constraints. Beginning programmers have a hard enough
 time learning how to translate their thoughts and intentions into
 working code, and solving bugs and the last thing they need is to
 deal with too many idiosyncrasies of the language only because it
 is too low-level.

 Spolsky’s argument about the efficiency of some operations is
 wrong, because programmers who learn such languages won’t often
 notice the difference from such inefficient operations, due to
 the incredible speed of contemporary computers and the fact that
 their data sets are generally too small. Moreover, many instructors
 and exercise checkers won’t penalise for the presence of
 such issues in their homework.

 While the efficiency of algorithms and the underlying
 implementation of language primitives should be stressed at
 a certain point, the first task of an introductory course is to
 make sure a programmer can learn to write code, not necessarily the
 most efficient one. (Not even according to asymptotic
 complexity). Learning how to write quick and dirty code is a
 mental leap that is large enough as it is.

The “First Programming Language Should Make Sure You
 Write Good Code” Fallacy

 You many times hear people saying that beginning programmers
 should be taught using a programming language that restricts them
 and forces them to write good code. Languages like Pascal, Ada,
 Java, and many others were designed to try to save programmers from
 themselves. And indeed many people believe that programmers should
 start learning from such a language.

 What’s wrong with this approach? Several things:

	
 The more strict the language is, then generally the less
 expressive it is. Programmers like to express themselves
 and be able to implement algorithms using the entire power
 of the language. They don’t want to declare a lot of type
 definitions, many constraints, write a lot of syntax, or
 otherwise be encumbered in the way.

 It may actually make them think programming is loathsome
 or otherwise a very strict process instead of a very
 creative process.[haskell]

	
 Often, the trial and error will be good for them. Plus,
 even writing some disorganised, but functional code is
 better than the program taking them much more time to
 write (and more time to read and understand after
 writing).

 I don’t expect them to become superb programming in a day.
 Becoming a better programmer is a process, and cannot be
 taught in a semester or a year of hard work.

The “It Should Have a Decent IDE” Fallacy

 Many education institutions reject many languages as introductory
 languages because they don’t have a decent integrated development
 environment (or IDE for short). An IDE as useful and
 convenient as it is, however, is not an absolute requirement.

 Programming does not happen in the IDE - it happens in the
 mind. Programmers should learn to write code that does something.
 By using the text editor (of the IDE or a standalone one) and
 writing text that does something, they can best learn to program
 for the real world.

 There is a myth that programming using a text editor and a command
 line is too difficult for mortals. This is false because, as late
 as the 1980’s or 1990’s, almost all personal computers used a
 command-line interface (often a BASIC interpreter or DOS), and
 required programming using non-graphical editors, and it was
 still adequate for most people. (To say nothing of earlier
 interfaces such as
 Teleprinters (TTYs)
 or punched cards). Plus, it is hard for a programmer
 to avoid typing code entirely.

[haskell]
 A
 comment to the first revision of this
 article claimed that “Some languages, like
 Haskell, derive their expressive power exactly
 because of the restrictions imposed”.
 My reply is that arguably languages like Lisp
 have the same expressive power, but obviously a more
 verbose syntax due to the fact they are using
 S-expressions
 and that they are lacking some functions that were
 added to Haskell, O’Caml and SML.
 Perl
 6 aims to combine more idioms from
 Haskell and Lisp than Perl 5 already has, yielding
 a language that’s generally even more succinct.

 I believe that Haskell derives its
 expressiveness not from its strictness, but rather
 from its abstractions, and that this expressiveness
 can be duplicated to a large extent in a less
 strongly typed language. However, my mastery of
 Haskell is still somewhat superficial, and so I’m
 not fully qualified to comment on it.

Some useful relations

 This section will introduce some useful relations (“Language A
 should be taught before Language B”) to consider in teaching
 programming, and explain them. By using these relations one can more
 easily reach a final verdict.

A High Level Language Should Come Before C

 C should not be taught as a first programming language from the
 reasons I have mentioned above. By all means, one should use a more
 high level languages which supports Managed programming, and other
 nice high level constructs. Languages like Perl, Python, Ruby and
 to a lesser extent Java and .NET are much better than C as
 introductory languages.

Perl/Python/etc. should Come before PHP

 Some people believe that PHP is a suitable introductory language.
 However, PHP has several major problems: lack of good abstraction
 mechanisms, many inconsistencies, many functions to do the same
 thing, and many nuances to its use. People who learn PHP right away,
 tend to write very bad (and sometimes very dangerous) code in it, and
 are not well-aware of its pitfalls.

 PHP is a fine language for the web and for other uses,
 especially because its implementation makes deployment of some
 large-scale web applications easier. However, the other languages in
 the so-called “dynamic”, “agile”, or “scripting” class of languages
 are not harder to learn, and less problematic. So they should be
 taught first instead.

Perl/Python/etc. should Come before Shell

 Some people believe that the first language a UNIX user should learn
 is a good shell (such as
 GNU Bash or
 zsh). However, Shell has some
 issues. The first is that the mentality of the UNIX Shell
 is different from the mentality of conventional programming languages,
 and causes native shell programmers to be less capable of adapting
 to a different language, as well as writing sub-optimal code in shell.

 The second is that in traditional shell, some operations are not as
 efficient as they should be. While more modern variants have
 introduced arrays and string-wise dictionaries, they are still an
 afterthought. For these reasons, shell is not recommended to learn
 before a dynamic language.

C should Precede Assembly

 It is certainly
 a good idea to learn Assembly language, preferably of
 several different processor architectures. However, C should be
 learnt first.

 The reason for that is that people who dive right into Assembly,
 tend to write sub-optimal code because they don’t understand well
 how this code is executed by the processor and how to compile it.
 This is while programmers who’ve learned C are better equipped
 to understand how Assembly code works, because it is somewhat
 more convenient yet still very close to Assembly.

 A friend of mine reported that in his workplace, where they write
 Assembly code for various Digital Signal Processors (DSPs) some
 of the native Assembly programmers order their instructions in
 ways that are executed inefficiently because of the special
 processor pipeline. He then told me that C programmers who learn
 Assembly make better Assembly programmers.

The First Language should be Practical

 A good first programming language should be practical and should
 grow up with you. I can tell from my experiences with the various
 BASICs, which were the first languages I learnt, that BASIC was
 fun because it was useful. Using BASIC on the old Intel-based
 computers, one could
 write games, graphical demos, text processing and command
 execution scripts, and even serious applications. While BASIC is
 in today’s standards a very limited language that should no longer
 be taught as a first language, I still fondly remember it as being
 a lot of fun. I even continued using BASIC after I learned C
 and what was then C++, because it was quicker and more convenient.
 (I no longer do, because I now feel that Perl is superior to BASIC
 in every way, and that’s what I’m using now.)

 On the other hand, Scheme as in SICP is an awful choice for an
 introductory programming language, because it feels very
 impractical. Writing quick and dirty code to do a lot of things
 in Scheme is very verbose, and plus, the core standard lacks many
 primitives for common
 POSIX
 operations (like random file I/O, directories, sockets, etc.)
 much less useful APIs. While some Scheme implementations provide
 extensions to the language, they do so in different incompatible
 ways.

 Different people I talked to, agreed with me that
 “You cannot do anything with Scheme”. Compare it to languages such
 as C and C++,
 Perl/Python/Tcl/Ruby/PHP, Java/.NET, etc. that feel very
 practical, and you’ll see why hardly any industrial-strength
 code is written in Scheme.

 Teaching a language just for teaching programming with, is
 sub-optimal because the students cannot take this language with
 them and perform real-world tasks with it. They will have less
 motivation to experiment on their own, and to remember it for
 long.

Localised Programming Languages should be Avoided

 The Wikipedia has an (incomplete) list of non-English
 based programming languages, that were created at
 some time. What these languages try to do is make sure young
 children or other people who did not master the English Alphabet
 and vocabulary well can start learning programming without
 knowing English first.

 I see several problems with this approach. One is that it is
 important that children will be taught English starting from an
 early age - as early as possible. This is because English, being
 the international language, is becoming more and more important
 for every one to learn. Tender children who are talked to in
 several languages, will quickly master them, without confusing
 them. This will save them a lot of frustration later. (By all
 means if one happens to know other languages, he should talk to
 his children using them too, but that is beside the main
 point.)

 Knowledge of English is more important than knowing how to
 program. So it is a good idea that when teaching programming to
 teach English first as a necessary pre-requisite.

 The other problem I see is that such localised programming
 languages feel unnatural and wrong. English has the richest
 technical vocabulary of any other language, and some terms in
 English are impossible to translate to other languages. And
 yet another is that such languages tend to be very ad-hoc
 and incomplete. Finally, code that is written in them cannot be
 understood by programmers who don’t know this language.

 So, to sum up, instead of starting with a localised programming
 language, teach your students some basic English first. It might
 take longer, but will save more time and frustration later on. Plus,
 programming is a great way to expand one’s mastery of English,
 especially today when the Internet is so prevalent.[globalisation]

Java Should be Taught After Perl

 Joel Spolsky wrote an essay titled
 “The
 Perils of JavaSchools” where he argued that teaching
 Java in Computer Science curricula is inferior to teaching
 C and Scheme, which was what he learned. The article is wrong
 on many points, but it highlights some of the problems with Java.

 Java is too verbose. Some people may argue that this can be
 solved by using a proper IDE, but as
 Paul Graham
 explains, verbose code also has the “the cost of
 reading it, and the cost of the space it takes up on your
 screen.”.

 Moreover, Java code tend to be very monotonous. Almost all
 Java code looks the same, and feels boring.

 Steve
 Yegge’s very funny article “Execution in the Kingdom of
 Nouns” illustrates another problem with
 Java. Everything has to be a noun, with no verbs or even
 the many keywords which Perl 5 is infamous for but which
 Perl programmers love. And instead of having some Perl 5-like
 operators for converting between data structures, you have a
 hideously long casting lines.

 Java was supposed to be kept simple, and many important concepts
 like closures, multiple-inheritance, defining methods at runtime (a
 la Smalltalk), runtime code evaluation (the Lisp-derived “eval”
 operator, which is now common in most dynamic languages), operator
 overloading, and many other elements had been kept out of it. As
 such it turned out to be very unusable. Java 1.5/5.0 introduced
 many drastic enhancements, but not enough proper abstractions. As a
 result, Java is now bloated, but talented programmers still
 normally find writing code in Perl, Python and friends more
 natural.

 Paul Graham’s essay
 Java’s
 Cover, which he wrote to explain why he decided not
 to learn Java is very instructive. I read Graham’s article, some
 time after it has been written and felt it reflected my
 feelings about the language. Back when Java started to become hyped
 , I had ended up learning Java to see what the hype was about and
 to write some browser applets. While having felt that I have truly
 understood what the essence of references in Perl 5 was, only
 after learning Java, I still felt that Java was too over-rated.

 Perhaps I’m getting too carried away in criticising Java. My point
 is that, as Joel Spolsky indicated in his “JavaSchools” essay,
 teaching Java as the first language, makes many of the people who
 have learned it airheads, who cannot think outside the limited
 constraints that it imposes on the programmer. Teaching an
 expressive and rich
 dynamic language
 such as Perl or Ruby instead, will not exhibit this problem,
 regardless of what Joel says, as these languages constantly require
 a programmer to think outside the box, and introduce the programmer
 to many different (often built-in) patterns and paradigms.

[globalisation]
 A few people who read this article claimed I was
 advocating globalisation. However, consider what
 Eric Raymond writes in
 “How
 to Become a Hacker”:

 4. If you don’t have functional English, learn it.

 As an American and native English-speaker myself, I
 have previously been reluctant to suggest this, lest it
 be taken as a sort of cultural imperialism. But several
 native speakers of other languages have urged me to
 point out that English is the working language of the
 hacker culture and the Internet, and that you will need
 to know it to function in the hacker community.

 One should note that the proliferation of English today
 is not the first time
 that there happened to be a Lingua
 franca
 in the world or a limited part of it. I also feel that
 having one spoken language that everyone of importance is
 familiar with (although possibly not so well) is better
 than not having any good common way of communication,
 and thus was shown to be inevitable times and again
 in history.

My Verdict

 According to these constraints one can conclude that one should
 start learning how to program from a high-level, dynamic and
 practical language such as Perl, Python or Ruby.

 Eric Raymond recommends this in his excellent
 “How to
 become a Hacker” document. He suggests one should start
 with XHTML, which while not being a programming language but rather
 a formatting language will still introduce many programming idioms
 and disciplines as well as prove useful later on.

 After XHTML, Raymond recommends one to learn Python. However, I’m
 not sure whether Perl 5 or Ruby will not be as suitable as Python,
 or more. Unfortunately, I cannot reach a conclusion here, but
 rather give some of my thoughts on each three languages.

 (If I need to teach programming, I’ll start with Perl because I know
 it very well, and like it a lot. However, programmers who are well
 versed in Python or Ruby, may wish to teach them instead.)

Perl, Python or Ruby

Perl

 The core Perl language is huge. That may be a good or a bad
 thing for teaching programming in. The Perl language can be
 usable by learning only a small subset of the language.
 However, as budding Perl programmers learn more they tend to
 diverge in the what they know, and use different subsets,
 which makes understanding code of peers with
 different background (much less experts) more
 problematic. This problem is naturally not limited to Perl 5,
 and given good, searchable documentation can be made less
 substantial, but is still a pedagogical hurdle.

 Perl is very expressive. I believe programmers will appreciate
 its “There is more than one way to do it” philosophy. A
 correspondent once told me he’d prefer to teach beginners
 Perl instead of C, similarly to the fact that he’d prefer
 to teach English over Esperanto, because beginners would prefer
 a language that allows them to express themselves.
 [Esperanto]

 Historically, Perl had a lack of good online
 documentation for beginners, and
 other
 problems with the treatment of newcomers, but
 this has improved lately.

 Perl has a rich (and so far unmatched) collection of
 re-usable modules that provide functionality called
 CPAN -
 the Comprehensive Perl Archive Network. Uploads
 to CPAN are not moderated (on purpose) and therefore it
 is sometimes hard to find a suitable CPAN module out of the
 many bad or unsuitable ones (if there actually is one
 available). [rethinking-cpan]
 They may prove useful in teaching programming in Perl.

 Perl has a rich and active culture surrounding it, including
 many diversions as obfuscated code,
 golf
 challenges,
 riddles, many specialised mailing lists, Local
 Perl Mongers groups, and conferences.

Python

 Python has a small core language and it tries to be elegant.
 It has an excellent online documentation, and many introductory
 books for it are available online. The online Python community
 has too much elitism, and tends to deprecate Perl a lot, for
 some reason. I am not blaming anyone in particular, but this
 tendency is present to some extent by some of the greatest
 names in the Python world, and by some Pythoneers I personally
 know.

 People who know Perl very well, can learn Python with fewer
 mental blocks than the other way around. This is in due to
 the fact Perl is richer, and supports more paradigms. A Perl
 programmer told me he was able to start working on a Python
 program right after starting to edit it using his editor,
 and it worked, after some research.

 Python’s philosophy is “There’s one good way to do it.”. It
 doesn’t mean that there aren’t other ways, but there is one
 commonly acceptable way to write most code. Whether this is
 a good thing or not for an introductory language is
 debatable.

 If PHP is the new Visual Basic, and Java is the new COBOL,
 then Python is the new Pascal. (Although, all these languages
 are better than their previous ones). In a way teaching Python
 as a first language, like teaching Pascal, makes a programmer
 used to limited paradigms and one strict way of doing things.
 (like teaching Esperanto instead of English). As a result,
 trying to learn other diverse languages is becoming more
 difficult.

 If you’ve learned Python as your mother language, you should
 take the mental leap and learn Perl, which is the Tower of
 Babel of languages, and also has many DWIMmeries
 (“Do-What-I-Mean”’s) and other expressiveness. (Of course,
 a Perl programmer should also learn Python due to its
 elegance, and the fact it is extensively used and useful.)

Ruby

 Before I discuss Ruby a word of warning: I don’t know it very
 well. So far all the limited tasks I tried to accomplish using
 it worked well after some trial and error, but I still did not
 take the time to thoroughly study it.

 Ruby was written after its creator was unhappy to some extent
 with both Perl (possibly 4 at the time) and Python, and so he
 created a language that tried to combine the best elements of
 Smalltalk, Perl and Python. Ruby aims to be
 elegant and consistent, yet still very expressive and shares
 Perl’s “There’s more than one way to do it” philosophy.

 As of version 1.x, Ruby does not support multi-threaded
 programming, has poor support for Unicode, and is much slower
 than Perl or Python. Some of these problems will be addressed
 in Ruby 2.x.

 The worst problem with Ruby, however, is the lack of good
 documentation. Ruby has
 one old
 edition of the “Programming Ruby” book available
 online,
 and that’s it. Furthermore, this book is intended for absolute
 beginners and will be too slow paced for people with extensive
 experience in similar languages.

 All the other books from the Pragmatic Programmer series
 are not available online (including the new editions of the
 “Programming Ruby” book). What many people end up doing is
 downloading them from “warez” sites or from Peer-to-Peer
 networks, but I wouldn’t encourage professors to tell their
 students to do that.

 I recall trying to find out how to tag methods in Ruby,
 in a similar way to Perl’s method or variable attributes.
 Google was no help and no one on Freenode on #ruby-lang told
 me and I asked several times, and people tried to research it.
 Eventually, someone I knew on #perl was able to give me the
 answer. He then claimed that many of the slightly more
 unconventional, but useful, tricks in Ruby were completely
 undocumented.

 As such, one may still encounter problems teaching Ruby as
 an introductory language. If these problems are remedied
 by the Ruby community, with some amount of work and effort,
 then this may be better.

Final Verdict

 All things considered, I’d say that Perl is the best choice now,
 as Python is too strict and unexpressive, and Ruby is documented
 in an extremely inadequate way. Again, any of the three languages
 would be a fine choice, and all of them should be learned by
 any programmer who is worth his weight in salt.

 Note that other than the main players in the dynamic language
 arena, there is the new crop of such languages:
 Lua,
 Io,
 The D Programming
 Language, and others. These languages may be more
 suitable in some respects, but on the other hand, may not yet
 have the
 brain-share, comprehensiveness (especially as far as APIs are
 concerned), usability, richness or
 “sex-appeal”
 [consistency].

[Esperanto]
 Several people contacted me saying I have
 misrepresented
 Esperanto here. I should note that I’m quoting
 someone else, and I admit that I don’t know Esperanto
 well enough to be sure if it indeed suffers from
 many problems attributed to artificial languages.

 The point is not to dismiss Esperanto, but rather to
 say that many people appreciate expressibility, and
 some of them also appreciate irregularity (or
 even inconsistency) in their spoken or programming
 languages, as it makes life more interesting.

[rethinking-cpan]
 As of April, 2008, there is an effort
 under-way to revamp
 the CPAN experience. The author of these
 lines is heavily involved with it, so he may be a bit
 biased. Plus, the effort is still in its infancy.

[consistency]
 Some people
 assume that the more consistent a language is the better.
 However, just as most people prefer expressive and inconsistent
 natural human languages like English, many of them would prefer
 their programming language to have some inconsistencies,
 Do-what-I-mean-erries, gotchas, etc. In Perl 5’s case it is well
 known that these make the language more expressive and succinct in the hands of
 a competent programmer.

Some Types of Teaching

 There are several different types of teaching programming to laymen.
 This section aims to cover the most important ones and what needs
 to be considered when they are done.

 The first type I’ll discuss is a self-teaching enthusiast who is
 trying to teach himself programming, perhaps with some help from
 his friends or people he is interacting with on the Internet. Such
 an enthusiast usually has a lot of motivation to learn, but on the
 other hand, will probably not put up with a material that bores
 him or seems trivial.

 The second type is a programmer who tries to teach a child or a
 teenager programming. Such youngsters are often mostly motivated
 by things that seem fun to them: games, demos, drawing pretty
 pictures programmatically, etc. They will have little nerve for
 a tedious programming language such as C, in which every task
 takes a boatload of code.

 A different type of pedagogy altogether is introducing programming to
 students in university. Such students are older, have more mathematical
 background, and will find other things aside from games enjoyable. On the
 other hand, they tend to have less willingness to experiment on their
 own, or to play with the computer. They expect to learn programming so
 they can either go on with their degree, or use it to learn the rest
 of their degree.

 When people teach programming in the so-called K-12 school (i.e.
 pre-college or university), then such students will have less
 mathematical background than their college counterparts, and may
 find learning programming (as they find learning most everything) a
 burden. On the other hand, they tend to be brighter and more curious.

 The final type of teaching is in training courses. It is known that
 such people often have to be spoon-fed the material. Plus, they may
 not be as bright as those who were accepted into high-class
 universities or colleges.

 How does this influence the choice of the introductory language? It
 probably doesn’t. However, it influences the way the language should
 be taught and which parts of it should be taught first.

Conclusion

 I talked with a few people on the IRC about it and some of them told
 me something along the lines of “What makes you think that you know
 better than all the universities and colleges (and other schools) that
 are now teaching Java?”. Well, this is the majority must be right
 fallacy:
	
 Everybody thinks that the Earth is flat (or
 the Sun revolves around it) so it must be true

	
 Everybody thinks that
 drugs
 should be illegal so it must be true.

 Etc. I can think of many other cases where a common consensus, even
 among experts turned out to be false. But I’ll still explain a bit.

 Universities have tended to teach the “hottest” language on the
 market. They used to teach Assembler. They used to teach COBOL (an
 awful language by all means, and one which proved to be a dead-end
 in language design). They taught Fortran and PL/I. They taught Pascal.
 They taught C and C++. And now they teach Java. I believe none
 of these languages were suitable as an introductory programming
 language, but they were taught because they were used in the industry.

 During the course of IT education, several languages need to be
 studied - at least one dynamic language such as Perl, Python or Ruby
 ; C; an assembly language; Lisp (Scheme, Common Lisp or perhaps
 now Arc);
 Haskell, O’Caml or SML; and probably some specialised languages when
 they are appropriate. But the first language need not be what is the
 most hyped language in the industry, or even what most the rest of the
 studies will be conducted in.

 From my impression of the Technion, the
 institute as a whole believes that students can effectively write all
 their code in C. In some courses, the choice of C++ and Java are
 given, but these languages are not effectively taught. Most students,
 during their studies, had not been exposed to such advanced paradigms
 as regular expressions, dynamic-typing, Perl 5-like nested data
 structures, run time evaluation, closures and dynamic functions, and
 others that are considered common knowledge among developers of
 dynamic languages, and any software development enthusiast who is
 worth his weight in salt.

 So my opinion still remains: Perl, Python or Ruby are the best
 languages for introducing non-programmers to programming, while Perl
 is the best, and Python is probably still the worst of the three.
 However, note that any decent programming training will introduce his
 developers to more than one language, and a prospective programmer
 should not worry if he started out with a language that I consider
 sub-optimal. With good ambition and motivation and with the right
 attitude (“I know that I do not know”), one can become a better and
 better programmer regardless of his initial background.

Other Good Food for Thought about Teaching

 This section will bring other good for thought about teaching.

“Live as if you were to die tomorrow. Learn as if you were to
 live forever.”

 This is a quote attributed to
 Gandhi.
 The “Learn like you were going to live forever” part is not widely
 understood by many workers. Many programmers believe that their
 knowledge of a few programming languages is enough, and that it is
 not necessary that they learn completely different ones.

 It is well known that learning a new and different programming
 language will make you a better programmer also in the original
 languages you know. Programmers who don’t learn new programming
 languages eventually stagnate. They are bounded by their limited
 knowledge, and cannot think outside their box. They deserve the
 stagnation they receive due to this bad attitude, and mental
 laziness.

 If you want to grow as a programmer, make sure you keep studying
 new languages and technologies. Not only they may turn out to be
 useful, but they’ll also make you think in completely
 different ways.

Three Levels of Learning

 Rabbi Hanina used to say “I learned a lot from my teachers, and
 from my friends more than my teachers, and from my pupils the
 most.” I believe this means that there are in fact
 three levels of learning:

	
 Level 1 - Learning -
 this is a passive learning of the
 material, where one inputs the material.

	
 Level 2 - Experiencing
 - in this level you work with the material you learned,
 and try to implement what you’ve learned and integrate it.
 This requires more understanding, because you have to
 work with the material.

	
 Level 3 - Teaching
 - in this level you teach the material to someone
 else. This requires the most understanding because
 you need to organise it properly and convey it to
 someone else.

 Perhaps there’s a fourth level -
 Science in which the knowledge
 is expanded. However, this implies that to truly understand the
 material, one needs to experiment with it (preferably in
 production) and better yet teach it to someone else.

 The old adage “He who can - does. He who cannot - teaches.” which
 was
 said
 by George Bernard Shaw is amusing, but simply not
 true, as I’ve demonstrated here. Being a great teacher is much more
 difficult than being a great doer, and is much more enlightening.
 [those_who_can]

Learn as Many Languages as Possible

 Learning one computer language is not enough. Knowledge of only
 one computer language or a few cripples the mind and causes the
 brain to run in circles. Different programming languages introduce
 different insights: various easier ways to do certain things,
 different restrictions , different syntax, different APIs,
 different ways of doing things, different high-level mechanisms
 (or lack of them). All of this gives different understandings
 of how to program in any language.

 Many people believe that their limited knowledge is adequate.
 Java programmers are especially notorious for being opposed to
 the ideas of them having to learn different languages. The
 Pragmatic
 Programmer book says
 a programmer should learn a new computer language at least
 every year, and I tend to agree with it. I compiled
 a
 tentative list of the technologies I found the most
 enlightening, and I recommend programmers to learn
 at least all of them.

Learning How to Read Code and Enhance Existing Code

 At present, universities and other spend most time teaching
 programmers how to write code. However, most of what programmers
 have to do for work or for pro-bono work (like open source
 projects) is to read code, and to enhance existing code.

 Joel Spolsky (“Joel on
 Software”) gave the following
 “cardinal rule of programming” in his famous
 “Things you must never do, part I” essay:

 It’s harder to read code than to write it.

 My friends and I later discussed this topic in the Hackers-IL
 mailing list. Even if code is given for reading in
 university, it is usually extremely well-written, highly organised,
 highly legible, code, rather than the real code that
 programmers are likely to encounter in the wild.

 It’s a shame most of the code students write as part of their
 curriculum is only for themselves, and ends up being of little
 value to the world at large. Even if some code ends up as an open
 source project, it is usually too incomplete and lacks essential
 functionality or correctness to be of any use in the real world.

 As Joel points out in the article, most programmers end up saying
 that the code they are working on is horrible and that they wish
 to completely rewrite it if they have the chance, instead of
 refactoring it
 to make it better.

 Furthermore, since reading code is harder than writing it, then
 it makes sense that programmers who are good at reading (or
 refactoring code or enhancing it) are much better programmers,
 than programmers who are only good at writing new code. I wish
 I had a dollar for every time I heard of someone trying to rewrite
 an existing functional and relatively bug-free codebase from
 scratch, just because this codebase was deemed of too little
 quality, and that afterwards this rewrite ended up at nothing.
 These cases practically dwarf the number of successful rewrites
 I recall.

 To sum up, it will be a good idea to teach first-time programmers
 how to read real-world code, or the code written by their
 co-students, and how to enhance it by extending it, and cleaning
 it up.

[those_who_can]
 What is true, in my opinion. is that “Those who can - do.
 Those who can’t - complain.” However, often people who can
 and do, still complain. I recall this quote being
 attributed to
 Linus
 Torvalds , but it
 predates
 him.

Thanks

 Thanks to Pete_I on Freenode,
 Omer Zak,
 chromatic,
 Jonathan Scott Duff, Sagiv Barhoom and others for reviewing
 early drafts of this essay and giving some editorial assistance.

